Get Frequency Table
osm.getFrequency(indf, inword = "shop", removeNA = T)
The vec
Boole
Ad
A nice histogram of a single variable with an additional Cumulative Density curve.
Other osm:
osm.ClipSFnetwork_with_poly()
,
osm.CreateEmptyRaster()
,
osm.bb_2_pol()
,
osm.combineAmenities()
,
osm.combineShops()
,
osm.getLength_footway()
,
osm.getPOI_usingbb()
,
osm.getPOI()
,
osm.getRoads()
,
osm.osmdata_result_2_bbox_pol()
library(goal)
sh = osm.getPOI(inPerioxi = "Mytilene Municipal Unit", inkey = "shop")
#> Issuing query to Overpass API ...
#> Announced endpoint: gall.openstreetmap.de/
#> Query complete!
#> converting OSM data to sf format
shops = osm.combineShops(sh)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: GDAL Error 1: PROJ: proj_as_wkt: DatumEnsemble can only be exported to WKT2:2019
#> Warning: GDAL Error 1: PROJ: proj_as_wkt: DatumEnsemble can only be exported to WKT2:2019
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: GDAL Error 1: PROJ: proj_as_wkt: DatumEnsemble can only be exported to WKT2:2019
freq2 = osm.getFrequency(shops, inword = "shop", removeNA = F)
freq2
#> # A tibble: 93 × 3
#> shop n freq
#> * <chr> <int> <dbl>
#> 1 NA 463 40.1
#> 2 clothes 91 7.88
#> 3 convenience 62 5.37
#> 4 hairdresser 40 3.46
#> 5 jewelry 27 2.34
#> 6 bakery 25 2.16
#> 7 supermarket 25 2.16
#> 8 kiosk 24 2.08
#> 9 shoes 22 1.90
#> 10 butcher 20 1.73
#> # ℹ 83 more rows